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In two-dimensional quantum site-percolation square lattice models, the von Neumann entropy is extensively
studied numerically. At a certain eigenenergy, the localization-delocalization transition is reflected by the
derivative of von Neumann entropy which is maximal at the quantum percolation threshold pq. The phase
diagram of localization-delocalization transitions is deduced in the extrapolation to infinite system sizes. The
nonmonotonic eigenenergies dependence of pq and the lowest value pq�0.665 are found. At localized-
delocalized transition points, the finite scaling analysis for the von Neumann entropy is performed and it is
found the critical exponents � not to be universal. These studies provide an evidence that the existence of a
quantum percolation threshold pq�1 in the two-dimensional quantum percolation problem.
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I. INTRODUCTION

The Anderson model1,2 and the quantum percolation �QP�
model3,4 are two important theoretical models that are used
to study electron localization properties in disordered sys-
tems. In the two models, the on-site energy randomness and
the geometric randomness are considered, respectively. For
the Anderson model, there are extensive studies and defini-
tive results,2 while for the QP model, there are many open
issues even today.

The main concern in QP problems is to locate the QP
threshold pq �accessible site concentrations by quantum par-
ticles� below which the electron is localized with probability
one. For the Anderson model and the QP model, there is a
consensus on the existence of localization-delocalization
transitions �LDTs� in three dimensions �3D�.5–8 For Ander-
son models, according to the one-parameter scaling theory,9

LDTs do not occur at and below two dimensions �2D�. How-
ever, whether the scaling theory is suitable for the QP model
is an open question10 and even whether LDTs exist in 2D QP
models at pq�1 is less clear.11 Studies such as the scaling
work based on numerical calculations of the conductance12

and transfer matrix methods with finite-size scaling
analysis13 showed no evidence for LDTs. At the same time,
there are many studies that claim LDTs exist.14–18 However,
the values of QP threshold pq obtained by different methods
are not consistent. For example, for 2D quantum site-
percolation square lattice models, Odagaki et al., obtained
pq�0.59 by a Green’s function method.14 Koslowski and
von Niessen gave pq�0.70 with the Thouless number based
on the Thouless-Edwards-Licciardello method.15 Srivastava
and Chaturvedi showed pq�0.73 with the participation used
by the method with equations of motion.16 Odagaki and
Chang found pq�0.87 using a real-space renormalization-
group method.17 Raghavan obtained pq�0.95 by mapping a
2D system into a one-dimensional system.18 Very recently,
Islam and Nakanishi suggested that pq depending on particle
energies by calculating the transmission coefficient for 2D
bond-percolation models.11

In the mean time, metal states or metal-insulator transi-
tions are observed experimently in a variety of dilute two-

dimensional electron and hole systems.19 At the same time,
the unusual transport properties of materials,10 such as metal-
insulator transitions happen in perovskite manganite films20

and in granular metals,21 and minimal conductivity in un-
doped graphenes,22 may be explained by 2D QP models.
Therefore these give additional motivations to study LDTs in
2D QP models.

On the other hand, quantum entanglement, which attract-
ing much attention in quantum information,23 has been ex-
tensively applied in condensed matter physics.7,25–34 For ex-
ample, quantum entanglement measured by the von
Neumann entropy was studied in the extended Hubbard
model,26,27 in quantum small-world networks,29 in two inter-
acting particle systems,30 in the extended Harper model,27,31

in three dimensional Anderson models,32 in the integer quan-
tum Hall system,32 and in spin models.33,34 It is found that
the von Neumann entropy shows singular behaviors at quan-
tum critical points �QCPs�. The derivative of von Neumann
entropy has very good finite-size scaling behaviors close to
QCPs even for quite small system sizes.32–34 Therefore it
becomes a powerful method to quantify QCPs in various
systems.

In this paper, with the help of the von Neumann entropy
we present a detailed numerical study of LDTs in the 2D
quantum site-percolation model. Our studies show that a
quantum site-percolation threshold pq�1 exists in the 2D
QP problem. In the next section the QP model and the defi-
nition of von Neumann entropy are introduced. In Sec. III
the numerical results are presented. And we present our con-
clusions and discussions in Sec. IV.

II. QUANTUM SITE-PERCOLATION MODEL AND VON
NEUMANN ENTROPY

A. Quantum site-percolation model

Let us consider one-electron tight-binding Hamiltonian
with diagonal disorder defined on square lattices of sites10

PHYSICAL REVIEW B 80, 174205 �2009�

1098-0121/2009/80�17�/174205�6� ©2009 The American Physical Society174205-1

http://dx.doi.org/10.1103/PhysRevB.80.174205


H = �
i

�ici
†ci − t�

�ij�
�ci

†cj + H . c .� , �1�

where �i is on-site potential, t is a nearest-neighbor hopping
integral, and ci

† �ci� is creation �annihilation� operators of the
ith site. The on-site potential �i can be drawn from the bimo-
dal distribution

p��i� = p���i − �A� + �1 − p����i − �B� . �2�

In the limit �B−�A→�, the electron moves only on a random
assembly of A-lattice points. Without loss of generality we
choose �A=0. In the situation the A-site occupation probabil-
ity is p and the corresponding quantum site-percolation
Hamiltonian reads

HAA = − t �
�ij��A

�ci
†cj + H . c .� , �3�

where the summation extends over nearest-neighbor A sites
only.

B. von Neumann entropy

The general definition of entanglement is based on the
von Neumann entropy.24 The generic eigenstate ��� for
Hamiltonian �3� with eigenenergy 	� is the superposition

��� = �
i�A


i
��i� = �

i�A


i
�ci

†�0� , �4�

where �0� is the vacuum and 
i
� is the amplitude of wave

function at ith site. For an electron in the system, there are
two local states at each site, i.e., �1�i and �0�i, corresponding
to the state with �without� an electron at the ith site, respec-
tively. The local density matrix �i is defined25,26,29–32 by

�i = zi�1�ii�1� + �1 − zi��0�ii�0� , �5�

where zi= ���ci
†ci���= �
i

��2 is the local occupation number at
ith site. Consequently, the corresponding von Neumann en-
tropy related to the ith site is

Evi
� = − zi log2 zi − �1 − zi�log2�1 − zi� . �6�

For nonuniform systems, the value of Evi
� depends on the site

position i. At an eigenstate �, we define a site-averaged von
Neumann entropy

Ev
� =

1

N
�
i=1

N

Evi
� , �7�

were N is the number of A-lattice sites. The definition �7�
shows that for an extended state that 
i

�= 1
�N

for all
i, Ev

�=− 1
N log2

1
N − �1− 1

N �log2�1− 1
N �	 1

N log2 N at N→�, and
for a localized state that 
i

�=�ii0
�i0 is a given site�, Ev

�=0. In
the present paper all the values of Ev

� is scaled by 1
N log2 N.

From the two examples, we know the scaled Ev
� is near 1

when eigenstates are extended and near zero when eigen-
states are localized. Henceforth, we omit “scaled” for
simplicity.

For a random system the site-averaged von Neumann en-
tropy Ev

� should be further averaged over different realiza-

tions of disorder. The resulting quantity, the disorder aver-
aged von Neumann entropy denoted by �Ev

�� for eigenenergy
	�, which is defined as

�Ev
�� =

1

N
�
i=1

N

Evi
� =

1

K

1

N�
i=1

N

Evi
� , �8�

where X̄ is denoted as random average and K is the number
of disorder realizations. In practice, �Ev

�� is the average val-
ues over a small window � around an energy value 	, i.e.,
	�� 
	−� /2,	+� /2�. We ensure that � is sufficiently
small, and at the same time there are enough states in the
interval �. Here �=0.04 is chosen and other � give similar
results.

Another quantitative measure that is widely used to char-
acterize localization is the participation ratio �PR�,35 defined

by ��= �N �
i=1

N

�
i
��4�−1, which gives the ratio of lattice sites

occupied by particles to all lattice sites at an eigenstate �.
For the above extended and fully localized states, ��=1 and
1 /N, respectively. Generally speaking, the larger �� is, the
more delocalized the eigenstate is. Similarly, the disorder
averaged PR ���� is also averaged over the same small en-
ergy window. Henceforth, the disorder averaged von Neu-
mann entropy �Ev

�� and the disorder averaged PR ���� are
simplified to the von Neumann entropy �Ev

�� and the PR ����,
respectively.

III. NUMERICAL RESULTS

In numerical calculations, we directly diagonalize the ei-
genvalue Eq. �3� with the periodic boundary condition and
obtain all eigenvalues 	� and the corresponding eigenstates
���. Without loss of generality, the hopping integral t is taken
as units of energy. From formulas �6�–�8�, we can obtain the
von Neumann entropy �Ev

��. We consider systems of
linear size L=20,30, . . . ,60 �measured in units of the
lattice constant� and having N=L2 A-lattice sites in total.
The corresponding number of disorder realizations
K=2500,2000, . . . ,500, respectively. More realizations give
similar results.

Before discussing possible localized-delocalized transi-
tions let us investigate the behavior of the von Neumann
entropy �Ev

�� at different site occupation probability p. The
�Ev

�� as functions of eigenenergies 	� are plotted in Figs.
1�a�–1�c� at L=20, 40 and 60 for p=0.2, 0.7 and 0.9, respec-
tively. It shows that at the same p, the values of �Ev

�� depend
on eigenenergies 	� and system sizes L. For p=0.7 and 0.9,
the �Ev

�� are relatively small for eigenstates near the band
edges, while relatively large for eigenstates near the band
center except eigenstates very near the band edges. Compar-
ing the values of �Ev

�� for the three p at the same L, on the
whole, all �Ev

�� are relatively small for p=0.2 and relatively
large for p=0.9. Compared to our results, the PR are also
plotted in Fig. 1�d� for L=60 at the three p. The variations of
the PR ���� with respect to 	� are similar to that of �Ev

�� in
Figs. 1�a�–1�c�. At the same time, the �Ev

�� versus the corre-
sponding ���� are plotted in Fig. 2. It shows that the �Ev

��
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increases monotonously with the ����, so the von Neumann
entropy can reflect the localization properties of eigenstates
in the QP model. To demonstrate the localization properties
intuitively, five typical wave function amplitude distributions
are plotted in Figs. 3�a�–3�e�. For p=0.2, all eigenstates are
localized in spaces like that shown in Fig. 3�a�. For p=0.9,
almost all eigenstates are extended similarly to that in Fig.
3�e�. For p=0.7, there are localized states 
Fig. 3�b�� and
delocalized states
Figs. 3�c� and 3�d��. As illustrated in the
caption of Fig. 3, the values of Ev

� and �� are relatively large
for extended or delocalized states and relatively small for
localized states, respectively.

To get a more detailed picture, a typical �Ev
�� varying with

all 	� and p for L=60 is plotted in Fig. 4. The line of mo-
bility edges computed in Ref. 15 is also plotted the figure.
The extended �localized� region is above �below� the line.
Figure 4 shows that, except at the band center, the �Ev

�� are
large and small for the regions above and below the line of
mobility edges, relatively, and abruptly changes at the line.
All these mean the �Ev

�� can reflect the localized-delocalized
transitions in the model.

To exact locate localized-delocalized transition points and
the corresponding critical exponents with a finite-size scaling

analysis, in the follows, we study the von Neumann entropy
�Ev

�� changes with the site occupation probability p for dif-
ferent eigenenergies. We found that the general trend for all
von Neumann entropy �Ev

�� curves at different eigenenergies
are similar except the one at the band center, so we will
discuss only two energies as examples, one that is away from
the band center and one very close to the band center.

A. Eigenenergies away from the band center

We first study the von Neumann entropy �Ev
�� and

related quantities for eigenstates with eigenenergies
	�� 
−0.84−0.02,−0.84+0.02�. The literatures11,14–17 agree
on the QP threshold pq pc�0.593 if pq exits, where pc is
the classical percolation threshold.36 Therefore, we study the
QP model at the site occupation probability p beginning from
0.4, which is far smaller than the lower bound of pq.

In Fig. 5�a�, we show the dependence of �Ev
�� on the site

occupation probability p at system sizes L=20,30, . . . ,60,
respectively. It shows that �Ev

�� monotonically increases as p
becomes larger. For a certain system size, when p is small,
e.g., p=0.4, the eigenstates are localized and �Ev

�� is small.
When p=1.0, the model shown in Eq. �3� is a two-
dimensional periodic potential system. Due to the Bloch
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FIG. 1. The von Neumann entropy �Ev
�� varying with eigenen-

ergies 	� at L=20, 40, and 60 for site occupation probability �a�
p=0.2, �b� p=0.7, and �c� p=0.9, respectively. �d� The correspond-
ing PR ���� at p=0.2, 0.7, and 0.9 for L=60.
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FIG. 2. The relation between the �Ev
�� and the corresponding PR
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FIG. 3. Amplitude distributions of some eigenfunctions for
L=60. �a� 	�=−0.8349, Ev

�=0.3167, and ��=0.0016 for p=0.2. �b�
	�=−2.7867, Ev

�=0.5586, and ��=0.0103, �c� 	�=−0.6568,
Ev

�=0.8424, and ��=0.1318, and �d� 	�=−0.1291, Ev
�=0.6842,

and ��=0.0352 for p=0.7. �e� 	�=−0.5179, Ev
�=0.9221, and

��=0.3393 for p=0.9.
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FIG. 4. �Color online�The von Neumann entropy �Ev
�� varying
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L=60. Line: mobility edge trajectory obtained by Koslowski and
von Niessen. �Ref. 15�
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theorem the eigenstate of a tight-binding electron on a local
regular lattice is always in the extended state. At the situa-
tion, �Ev

�� is largest. All these reflect the trivial delocalization
effect of p, which is similar as that studied in quantum small-
world network models.29 All data shown in Fig. 5�a� are well
fitted with nonlinear Boltzmann functions for various system
sizes. According to the fitted lines, we plot the derivative
d�Ev

�� /dp varying with p in Fig. 5�b�. It shows there is a peak
in the derivative at a certain p, which is denoted by pmax. The
maximal derivative and pmax increase with the system sizes
L, respectively. It is believed that the von Neumann entropy
may be nonanalytic at a quantum phase transitions and can
reflect various quantum critical points.26,32 Therefore, that
the derivative is maximal at a certain position pmax, can be as
a signature of LDTs of electron states.27,29

To study the LDTs at the QP threshold pq, one needs to
investigate the behavior of systems in the thermodynamic
limit. However, in most cases this is not possible in numeri-
cal methods,37 and therefore, similarly as in Ref. 27 an ex-
trapolation method is chosen. Figure 5�c� shows the scaling
behavior of the pmax. The pq in the thermodynamic limit can
be obtained by 1 /L→0 and Fig. 5�c� shows pq�0.676 at the
situation. We denote the derivative of von Neumann entropy
at pmax as d�Ev

�� /dp �max. Following the Refs. 33 and 34, the
finite-size scaling is performed for the function
1−exp�d�Ev

�� /dp−d�Ev
�� /dp �max� with respect to

L1/��p− pmax�. The result is presented in Fig. 5�d�. It shows
numerical results obtained from various system sizes ap-
proximately collapse on a single curve with the critical ex-
ponent ��2.52.

B. Eigenenergies near the band center

In the following, we discuss the von Neumann
entropy �Ev

�� for eigenstates with eigenenergies 	�

� 
0–0.02,0+0.02�. The von Neumann entropy �Ev
�� and the

corresponding derivative d�Ev
�� /dp varying with the site oc-

cupation probability p are shown in Figs. 6�a� and 6�b�, re-
spectively. Figure 6�a� shows that �Ev

�� first increases with p
until to a plateau at p� 
0.6,0.85�, then continues to in-
crease, which is quitely different from that shown in Fig. 5�a�
for eigenenergies away from the band center. Figure 6�b�
shows that the derivative d�Ev

�� /dp drastically decreases near
p�0.6 and drastically increases near p�0.85.

With a real-space renormalization-group method, Odagaki
and Chang observed three regimes of the electronic proper-
ties in QP models, which divided by the classical percolation
threshold pc and the quantum percolation threshold
pq�pq� pc�.17 When p� pc, electrons cannot tunnel between
different isolated clusters and electrons are considered to be
localized in the classical sense even in the quantum case.
When pc� p� pq, due to quantum interference effects, elec-
trons cannot spread infinitely even there is an infinitely ex-
tended channel. The regime is called quantum localization
regimes. When p� pq, electrons can spread infinitely and
electron states are extended. They found pc=0.618 and
pq=0.867. It is interesting that the von Neumann entropy
�Ev

�� drastically changes near the two p values.

C. Phase diagram

We have studied and extensively analyzed the von Neu-
mann entropy for all the other eigenstates. As the system in
Eq. �3� is bipartite, 	� and −	� are both eigenvalues of

ĤAA.15 Therefore we will restrict our investigation to one
�left� half side of the band, i.e., −4�	��0. Figure 7�a� pre-
sents the phase diagram of LDTs in the 	�− p plane. The
values of p at the LDTs are the QP threshold pq, which is
obtained by the extrapolation method similarly as that shown
in Fig. 5�c�. The trend for pq varying with 	� is similar as
that for 2D quantum bond-percolation models on square
lattices11 and 3D quantum site-percolation models on simple
cubic lattice.5,8 In detail, we observe the nonmonotonic de-
pendence of the values of pq on eigenenergies 	�. Notice that
in the region −2t�	��−0.5t the QP threshold pq are nearly
constant and a weak maximum at 	��−t, which are very
similar as that found in Ref. 5. That a weak maximum for pq
at 	��−t has also been found and discussed in Ref. 8, which
may be due to the existence of von Hove singularity at the
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energy.5 We find all the QP threshold pq are greater than the
classical percolation threshold pc�0.593 and the lowest
value pq�0.665. As shown in Fig. 7�a�, the phase diagram is
very consistent with the mobility edge trajectory shown in
Ref. 15 for the same model obtained by the Thouless-
Edwards-Licciardello method.

Figure 7�b� presents all the critical exponents � versus
eigenenergies 	� according to the finite scaling analysis simi-
larly as that shown in Fig. 5�d�. We find the values of �
depend on eigenenergies 	�. In detail, in the region
−2t�	��−0.5t where pq are almost constant 
see Fig. 7�a��,
most of the values of � are distributed in a relatively narrow
interval 
2.6,3.2�. From the band edge to 	��−2t, � increase
with 	�, while from 	��−0.5t to the band center, � decrease
with 	�. All � are larger than 2 /D�D=2�, which satisfies the
assumption that � must satisfy the bound �2 /D for ran-
dom systems.38 Though � has been extensively studied in 3D
QP models,6,7,17 to our best knowledge, there are few works
to study � in 2D QP models except in Ref. 17, where the
critical exponent for correlation lengths ��3.35. The vary-
ing of the critical exponent � with the QP threshold pq is
plotted in Fig. 7�c�. It shows near the band edge and near the
band center the relation between � and pq is linear, respec-

tively, but the linear relations are different. This may be
caused by the different symmetry and/or degeneration at the
two energy regions.3,8

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have detailed studied the von Neumann
entropy �Ev

�� varying with eigenenergies 	� and accessible
site concentrations p by quantum particles in two-
dimensional quantum site-percolation models on square lat-
tices.

For eigenenergies away from the band center, we deter-
mine the QP threshold pq by the derivative of von Neumann
entropy is maximal at the point. Based on this, we give the
phase diagram of LDTs in the 	�− p plane, which is very
consistent with the mobility edge trajectory shown in Ref.
15. From the phase diagram, we observe the nonmonotonic
eigenenergies dependence of pq and the lowest value
pq�0.665. At the same time, the finite-size scaling analysis
is performed at all LDTs points. To the best of our knowl-
edge, it is the first time to obtain all the critical exponents �
at the whole energy space for 2D QP models. We find the
critical exponents � depend on eigenenergies 	�.

For eigenenergies near the band center, the variations of
the von Neumann entropy �Ev

�� with respect to p for are
quitely different from that for eigenenergies away from the
band center. It can reflect the classical percolation threshold
pc and the QP threshold pq for eigenenergies at the band
center.

All our numerical results show that there is pq�1 in 2D
QP models and pq depends on eigenenergies. The debates on
the values of pq may be partially due to different energies
treated in literatures.
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